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Abstract 

Conventionally measured bid-ask spreads of liquid equity options are large.  This 
presents a puzzle, which we resolve. At high frequency, changes in option prices can be 
predicted using recent changes in stock prices. A large proportion of option trades exploit 
this predictability to take liquidity at low cost, buying and selling immediately before 
option prices are expected to change.  Conventional measures of effective spreads and 
price impact do not account for this execution timing but can be adjusted to do so.  For 
the average trade, effective spreads that take account of trade timing ability are one-third 
smaller than the conventionally measured effective spreads; for trades that reflect 
execution timing, they are five times smaller.  These findings have striking implications 
for the profitability of options trading strategies that involve taking liquidity. In addition, 
conventional measures of price impact overstate it by a factor of more than two. Our 
results also indicate that most option trades originate from investors who time executions, 
for example proprietary traders and institutional investors who have access to execution 
algorithms. 
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1. Introduction  

At first glance, option market bid-ask spreads are puzzling.  In our data on some 

of the most liquid and actively traded options, quoted option bid-ask spreads average 8.1 

cents per share.  Spreads are even wider for options that are well in-the-money. 

Conventionally measured effective spreads, which reflect the fact that trades tend to 

occur when quoted spreads are narrow, average 6.2 cents per share.  For comparison, the 

average option price in our sample is $1.70.  To the extent that these quoted and effective 

spreads measure the costs of taking liquidity in the options market, the costs of taking 

liquidity are high.  In contrast, the spreads on the options’ underlying stocks average 1.4 

cents per share, and often are only one cent per share.   

Puzzlingly, quoted option bid-ask spreads did not change much during our sample 

period of April 2003 to October 2006 despite the more than doubling of option trading 

volume from 2003 to 2006, by which time option trading volume was 17% of stock 

trading volume.1  The failure of quoted spreads to decline appears to be inconsistent with 

both theories in which reductions in trading costs increase trading volume and theories in 

which increases in trading volume lead to lower costs per unit.  Our sample period is also 

the period during which algorithmic trading came to dominate the option markets, 

making the failure of quoted spreads to decline even more surprising.  Who is paying 

these high quoted spreads?  

Existing theories are also unable to explain why spreads of options on the same 

underlying stock increase with option moneyness and the high spreads of in-the-money 

options.  This pattern cannot be explained by hedge rebalancing costs incurred by option 

market makers, because hedges of well in-the-money options rarely need to be 

rebalanced.  Similarly, the pattern cannot be explained by market makers’ costs of 

hedging gamma and vega risks, because well in-the-money options are not exposed to 

these risks.  Moreover, through the put-call parity relation in-the-money calls (puts) have 

gamma and vega risks similar to those of their corresponding out-of-the-money puts 

                                                 
1 Data from the Options Clearing Corporation indicates that equity (not including index) options on 
approximately 83 and 184 billion shares traded during 2003 and 2006, respectively 
(http://www.optionsclearing.com/webapps/historical-volume-query). During 2013 option trading volume 
was 27% of stock trading volume computed using CRSP data, which includes trading in non-optionable 
stocks 
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(calls), but much different spreads.  The large differences between the spreads of options 

and their underlying stocks also cannot be explained by differences in the adverse 

selection component of the spread, unless informed traders are much more common in 

the options market than in the stock market and they choose to trade in-the-money 

options rather than at- or out-of-the-money options with more embedded leverage.  The 

low bid-ask spreads in the stock market imply that option spreads also are too large to be 

explained by option market makers’ costs of executing the initial delta hedge trades.  

The existing literature has attempted to explain option quoted and effective 

spreads using proxies for initial delta hedging costs, hedge rebalancing costs, and 

asymmetric information, and achieved limited success (Jameson and Wilhelm 1992, 

George and Longstaff 1993, Cho and Engle 1999, De Fontnouvelle et al 2003, Kaul et al 

2004, Engle and Neri 2010, and Goyenko et al 2014).  Most of these papers study either 

S&P 100 options or small numbers of equity options using short data samples, and most 

do not use data from the current market environment following the Options Linkage and 

the widespread adoption of algorithmic trading.2  This literature uses regression analyses 

to produce evidence that proxies for the initial delta hedging costs, hedge rebalancing 

costs, and asymmetric information are correlated with option quoted and effective 

spreads. As discussed above, such analyses cannot explain why the levels of spreads are 

so large.  The only paper that uses a large dataset from the current market environment, 

Goyenko et al (2014), separately considers in-, at-, and out-of-the-money options and 

thus does not attempt to explain the cross-section of spreads.  

We resolve the puzzle of high option spreads by showing that the cost of taking 

liquidity in the option market is much less than both the quoted spread and the 

conventionally measured effective spread.  These measures do not account for the fact 

that many investors take liquidity by buying (selling) options at times when recent stock 

price changes and other high-frequency public information imply that expected changes 

in option prices over very short horizons are positive (negative).  A large fraction of the 

options trades in our sample, about 40%, reflect such trade timing; during the last sample 

month the fraction was 54%.  For trades that display high-frequency trade timing ability, 

                                                 
2 Goyenko et al (2014) use a large recent sample, while Engle and Neri (2010) use data from “nine liquid 
tickers in the financial sector traded in four dates of 2007.” 
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an effective spread measure that takes account of it is only about 1.3 cents per share, just 

21% of the conventionally measured effective spread of 6.2 cents per share and 16% of 

the average quoted spread of 8.1 cents per share. By the last month of the sample period 

the effective spread measure that takes account of trade timing ability is only 1.1 cents 

per share.  These findings have striking implications for the possible profitability of 

options trading strategies that involve taking liquidity. 

Averaging over all trades, the effective spread measure that takes account of high-

frequency trade timing ability is just 67% of the average conventionally measured 

effective spread and 53% of the average quoted spread.  The new measure of effective 

spreads declined during the sample period, beginning at 5.5 cents per share and reaching 

3.5 cents per share by the end of the sample period.  This decline was primarily driven by 

the increase in the fraction of trades that exploit timing ability, which almost doubled 

from 27.5% to 54% of trades. 

At most only a few retail investors have the resources and ability to time their 

option trades based on high-frequency changes in stock prices and other market 

information.   Thus, our finding that 40% of option trades exploit ability to time 

executions indicates that a large proportion and perhaps most option trading is done by 

sophisticated proprietary traders or institutional investors who either possess execution 

algorithms or have access to brokerage firm execution algorithms, and also suggest that 

the recent growth in option volume was driven primarily by professional investors 

entering the market.    The 40% estimate is a lower bound on the proportion of 

sophisticated investors’ option trades because some sophisticated investors will 

sometimes trade options without timing executions.  Retail and other investors who are 

not able to time executions will on average trade when the option price is expected to stay 

the same and their costs will equal the conventionally measured effective spreads. During 

the last month of our sample period the fraction of option trades exploiting execution 

timing had increased to 54%, indicating that more than half of option trades are due to 

sophisticated investors. 

  Our lower estimates of the costs of taking liquidity are driven by the fact that at 

high frequencies option price changes can be predicted using recent changes in 

underlying stock prices and other high-frequency public information.  We document this, 
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and also that many option trades exploit this predictability to trade at favorable times.  

Buy trades are executed when high-frequency public information indicates positive 

expected short-term changes in option prices, and sell trades are executed when such 

information indicates negative expected changes in option prices.  An alternative 

interpretation is that option traders buy after the value of the option has increased to be 

close to the ask price but the ask has not yet been adjusted, and sell after the value of the 

option has declined to be close to the bid price but the bid has not yet been adjusted.  We 

use two simple models to estimate the expected change in the option price over short 

horizons, which, combined with the current option price, provide estimates of the 

expected future option prices based on public information. 

The effective spread is estimated from the difference between the transaction 

price and an estimate of the fair market value or “underlying true value” of the security.3  

Conventionally, the bid-ask midpoint is used as an estimate of the security value, and 

thus the effective spread is measured as the difference between the transaction price and 

the bid-ask midpoint.  The justification for this conventional approach is the lack of a 

readily available better estimate of the security value; if a better estimate is available, 

researchers should use it.  We take up the challenge of developing a better measure of the 

security value.  In particular, we use an estimate of the expected future price based on 

past publicly available information.  Because trades tend to occur at times when our 

estimates of expected future prices based on public information are systematically 

different from the bid-ask midpoints, our estimates of the effective spread differ from 

conventional measures.    

The execution timing that we document also resolves the puzzle of why dollar 

spreads of in-the-money options are so much larger than those of at- or out-of-the-money 

options.   Option spreads have to be wide, or else movements in stock prices would create 

arbitrage opportunities as option market makers get “picked off.”   They are wider for 

options with larger deltas because the prices of such options are more sensitive to stock 

price movements.  The large bid-ask spreads limit traders’ ability to exploit option price 
                                                 
3 For example, the recent survey by Bessembinder and Venkataraman (2010) explains that the effective 
spread is computed using “an observable proxy for the true underlying value of [the] security.”  In 
measuring price impact Hasbrouk (1991) uses the concept of the “efficient price,” which is defined as the 
expected future price as the forecast horizon becomes large computed from computed from a vector auto-
regression.  
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predictability to develop profitable stand-alone trading strategies.  The large spreads also 

mean that taking advantage of the short-term predictability is a key element in reducing 

trading costs.  In contrast to the quoted and conventional effective spreads, our estimates 

of the costs of taking liquidity in the in-the-money options are not implausibly high but 

rather are consistent with the costs of executing the initial delta hedge trades.4 

Execution timing also has implications for estimates of price impact.  

Conventional measures of price impact are estimated from the difference between the 

midpoint sometime after the trade and the prevailing midpoint at the time of the trade.  

We replace the midpoint at the time of the trade with the expected future midpoint, a 

better estimate of the underlying security value, and obtain estimates of price impact that 

are only about one-half as large as conventional measures.  Our findings about effective 

spreads and price impact corroborate the growing concern that traditional microstructure 

measures do not properly capture execution costs and price impact in modern electronic 

markets (Holden and Jacobsen 2013).   In addition to corroborating this concern, we 

provide measures that take account of the high-frequency predictability of prices. 

The main results about the differences in the costs of taking liquidity are 

confirmed using an alternative method to classify trades into those likely to have been 

initiated by execution timers (algorithms) and non-timers (human traders) that is not 

based on a model of future option price changes. Human traders are more likely than 

execution algorithms to choose round numbers (divisible by ten) as their trade size.  

Indeed, humans psychologically prefer round numbers (Rosch 1975), while algorithms 

often compute trade sizes using mathematical formulas. Taking advantage of this, we use 

non-round and round trade sizes as proxies for trades initiated by algorithms and directly 

by humans, respectively.5   Trades of non-round size identified as likely algorithmic 

                                                 
4 In most cases, investors who wish to establish or close out option positions have little alternative to taking 
liquidity and execution timing.  For each underlying stock, option trading is spread across up to several 
hundred option contracts, most of which trade infrequently. As a result, a customer limit order in a 
particular option is unlikely to execute within a reasonable amount of time, and option market-makers 
provide liquidity in most option transactions.   
 
5While this alternative identification of algorithmic and human trades does not depend on the model we use 
to predict option price changes, it is consistent with it.  Our predictive model indicates that trades of round 
size (e.g., 30 contracts) are more likely to display execution timing ability than trades of similar but non-
round sizes (e.g., 29 or 31 contracts).  
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trades have substantially larger conventionally measured price impact than the round 

trades identified as likely non-algorithmic trades.  However, our price impact measure 

that takes account of execution timing is similar for both round and non-round trades.  

This implies that the difference in conventionally measured price impacts can be 

explained by execution timing.  

Our results are important for interpreting research that documents the 

performance of option trading strategies.  Recent such studies include Goyal and Saretto 

(2009), Driessen, Maenhout, and Vilkov (2009), Bali and Murray (2013), Cao and Han 

(2013), Doran, Fodor, and Jiang (2013), Boyer and Vorkink (2014), and Muravyev 

(2014).  The low transaction costs obtainable via execution timing likely make profitable 

some trading strategies that would otherwise not be profitable.  For example, Goyal and 

Saretto (2009) report that their long-short decile straddle portfolio returns are reduced 

from 22.7% to 3.9% per month if they assume that options are traded at the quoted 

spread, while Driessen, Maenhout, and Vilkov (2009) find that the alpha of their trading 

strategy becomes insignificant when they assume that trades occur at quoted bid and offer 

prices.  Cao and Han (2013) report results for widely varying assumptions about effective 

spreads, presumably because they have little information about the costs of taking 

liquidity in the option market.  Our finding that costs of taking liquidity are much less 

than quoted spreads and conventionally measured effective spreads, and very much less 

for traders who effectively time executions, has implications for analyses like these.  We 

also contribute to the literature on optimal trade execution (e.g., Almgren and Chriss 

2001 and Bertsimas and Lo 1998) by showing one mechanism that can be used to reduce 

trading costs. The paper also provides a rare glimpse into how some execution algorithms 

can operate at high frequencies.   

2. Data 

The paper uses tick-level data for 39 stocks including 2 ETFs from the option and 

equity markets.  The data are provided by Nanex, a firm specializing in delivering high-

quality data feeds.  The sample period includes 882 trading days from April 2003 through 

October 2006. The selected stocks had the largest option trading volume during March 

2003, just prior to the beginning of the sample period.  The data include trades and best 
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quotes for both stocks and options from all exchanges which list them.  Muravyev, 

Pearson, and Broussard (2013) describe the data in more detail. 

Our sample period begins shortly after the introduction of the Options Linkage 

connected all U.S. option exchanges in January 2003 and forced exchanges to upgrade 

their infrastructure, and was the period during which algorithmic trading came to 

dominate the U.S. options markets.  The period of changes in the competitive landscape 

during which new options exchanges entered the market and almost all options became 

multiply listed was completed prior to the beginning of our sample period, and the 

reduction in tick sizes to pennies occurred after the end of the sample period.  Mild data 

filters are applied to the trade sample. We include options with between 5 and 700 

calendar days before expiration.  The first and last five minutes of trading are excluded to 

avoid the opening and closing rotations. Trades for which implied volatility or the 

expected option price cannot be computed are also excluded. After applying all filters, 

the final sample consists of 20.4 million option trades.  The Nasdaq ETF QQQ has the 

largest number of trades (1.8 million before the ticker change and 1.9 million afterwards) 

while AOL has only 52 thousand trades.6 

Summary statistics are reported in Table 1. An average trade has a price of 1.70 

dollars and size of 30 contracts on hundred shares each. However, the trade size 

distribution is highly skewed with 50th and 75th percentiles of 10 and 20 contracts 

respectively; and 14% of trades have the smallest possible size of one contract. There are 

slightly more seller-initiated trades (54%) than buyer-initiated trades (46%), and 

considerably more call option trades (64%) than put option trades (36%). 

The trade direction is determined by the quote rule. If a trade price is at the quote 

midpoint of the National Best Bid and Offer (NBBO), then the quote rule is applied to the 

best quotes of the reporting exchange. The method is quite reliable as 84% of trades 

occur at the NBBO prices. On average, three out of six option exchanges quote the best 

national price at the time of a trade. 

                                                 
6 AOL dropped from the sample after changing its ticker in October 2003. Several other stocks also 
dropped from the sample due to ticker changes. 
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3. Execution Timing in the Option Market 

At high frequency changes in estimates of option values based on recent changes 

in stock prices predict future option price changes.  We first explain our estimates of 

option values, and then document that short term changes in option prices can be 

predicted based on recent changes in the prices of their underlying stocks.  After that we 

show that investors exploit this predictability to time executions of option trades. 

3.1 Estimates of option values implied by underlying stock prices 

The underlying stock price can be transformed using the Black-Scholes-Merton 

(BSM) formula into its option price equivalent, which we call the implied option price.  

We compute the implied option price by combining the current stock price with implied 

volatility estimated from past stock and option bid-ask midpoints. 

The method consists of two steps outlined in Eq. (1): 




 
N

i
titttttt IV

N
IVTKIVSTKP

1

BSM 1
),,,,(BSM),(ˆ ,         (1) 

where ),,,(BSM),(ˆ BSM TKIVSTKP tttt  is the option price computed using the BSM 

formula, St  is the underlying stock price at time t, IVt is the average implied volatility 

over the previous thirty minutes, K is the option strike price, and T is the time to 

expiration.  Specifically, for each option we compute the implied volatility using stock 

and option bid-ask midpoints at two-minute frequency over the previous 30 minutes, i.e. 

a total of N = 15 estimates, and then average the 15 estimates.7  In the second step, the 

current stock price is transformed into the implied option price using the past implied 

volatility and the same BSM formula as in the first step.8  Muravyev, Pearson, and 

Broussard (2013) use a similar idea. 

The method can be viewed as a non-linear regression between the option and 

stock prices with one unknown parameter, the implied volatility.  The regression is 

estimated on the recent price history and is then used to predict the option price 

corresponding to the current stock price. Thus, the method depends little on the particular 

                                                 
7 The results depend little on the particular scheme used to compute implied volatility. 
8 As for the other parameters in the BSM formula, we assume no dividends and set the risk-free rate equal 
to 60-day LIBOR. Time to expiration is measured using calendar time.  The results change little if we use a 
stock price with one second lag to allow for possible latency between the markets. 
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option pricing model and its assumptions.  However, it does require two assumptions.  

First, it assumes that implied volatility changes more slowly than the underlying stock 

price during a trading day. Indeed, after adjusting for market microstructure effects, 

implied volatility usually changes slowly and smoothly intraday.  Second, the implied 

option price should equal on average to the option quote midpoint during the estimation 

window (30 minutes), which is equivalent to assuming that the option quote midpoint is 

on average an unbiased estimate of the option fair market value.    

3.2 Short-term option price predictability 

The implied option price is a good predictor of the change in the option price over 

the next few minutes.  We show this using a simple univariate regression of the change in 

the quote midpoint over a horizon of length  on the difference between the implied 

option price and the quote midpoint,  

tt
BSM

ttt PPPP   )ˆ(10 ,    (2) 

and then extend the model to include other predictors in Eq. (3) below.  The model in Eq. 

(2) is estimated on regularly spaced five-second intervals over each trading day, pooling 

together all options on a given stock.  We then average the coefficient estimates across all 

trading days for each stock, and compute t-statistics for the average coefficient estimates. 

Table 2 reports the results on a stock-by-stock basis.   

The results in Table 2 show that changes in option quote midpoints over each of 

three time horizons ( = 1 minute, 10 minutes, and 1 hour) are predicted by the 

difference between the implied option price and the option quote midpoint.  The implied 

price explains a large portion of the short-term variation in option prices, with an average 

R2 of 22% for the one-minute horizon.9 The coefficients range from 0.34 to 0.69, with an 

average of 0.54. That is, in just one minute, the option price moves more than half the 

distance required to converge to the implied price.  As expected, the average value of the 

regression coefficient is larger over the 10-minute and one-hour horizons.  

Although this simple model works well, traders who time executions may use 

additional information to predict option price changes.  We find that although other 

                                                 
9 As expected, R2 decreases with the time horizon from 10% for the ten-minute horizon to 3% for the one-
hour horizon.   Even the latter number is large for regressions that predict price changes or returns.  
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variables somewhat improve the forecasts, the implied price remains the most important 

predictor.  The model 

tj tjtjtittiti i

t
BBO

tt
BSM

ttt

dPdS

PPPPPP









   



12

1 16

12

1 4

t4t3210

)(

ExchAsk#ExchBid#)ˆ()ˆ(
   (3) 

 extends the simple model in Eq. (2) and includes information about the limit order book 

and short-term option and stock price dynamics.  The state of the limit order book is 

represented by the difference between the average quote midpoint across all exchanges 

(BBO average) and the NBBO quote midpoint, t
BBO

t PP ˆ . We also include the numbers 

of exchanges at the best ask and bid prices with the idea, that if only a single exchange 

quotes the best ask (bid) price, it is likely to increase (decrease) soon. Price changes over 

the previous minute are represented by option and delta-adjusted stock price changes over 

the 12 most recent five-second periods. The regression is estimated separately for each 

stock and six groups of options defined by absolute delta (cut-offs of 0.35 and 0.65) and 

time-to-expiration (cut-off of 60 days) on each day using regular five-second time 

snapshots.  

Table 3 reports the average coefficient estimates across all stocks for regressions 

estimated using ten minute and one hour time horizons. All of the average coefficient 

estimates are highly significant and have the expected signs. Changes in the option quote 

midpoint are highly predictable with R2’s ranging from 9% to 17% across the six groups 

at the 10-minute horizon and 8% to 18% at the one-hour horizon. The difference between 

the BSM implied price and the NBBO midpoint, t
BSM

t PP ˆ , is the most important 

variable, consistent with the results in Table 2 showing that this variable alone is able to 

predict changes in option prices. The difference between the average BBO across 

exchanges and the NBBO, t
BBO

t PP ˆ , is the second most important variable. It is highly 

correlated with the difference t
BSM

t PP ˆ  but also provides some independent information.  

Consistent with Muravyev et al. (2013), the option market lags slightly behind the 

underlying stock, and the option midpoint is mean-reverting perhaps because of 

aggressive limit orders. The role of short-term price swings diminishes as time horizon 

increases.  
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We rely primarily on the extended model in Eq. (3) because option traders who 

time executions are likely to have access to other information in addition to the stock 

price. However, the results for the round-sized trades in Section 6 suggest that many 

investors rely only on the implied option price in timing their trade executions.    

3.3 Execution timing when option prices are predictable  

If the option price changes predictably and tends to move toward the implied 

option price, then the difference between the implied option price and current quote 

midpoint signals the best time to execute a trade. Specifically, investors who desire to 

buy options should execute purchases when the implied option price (i.e., the estimate of 

option value) approaches the ask price.  If they do this then the difference between the 

transaction price they pay, the ask price, and the option value will be small.  Similarly, 

investors who desire to sell options should execute sales when the implied option price 

approaches the bid price, because doing so will make the difference between the value 

and the trade price they receive small. We call this strategy execution timing.  

This intuition can be generalized from the implied option price to the general 

predictive model of option price changes.  The expected future price from a regression 

aggregates more information and thus is a better estimate of the underlying option value 

than the implied option price. Specifically, the model in Eq. (3) is estimated on past data, 

and then the coefficient estimates are multiplied by current values of the covariates to 

produce the predicted option price at a given horizon (e.g., one hour). This predicted 

price can be used in the same way as the implied option price: if the price is expected to 

increase (decrease), then it is good time to buy (sell).  

Figure 1 is a stylized illustration of execution timing.  The figure shows option 

prices (vertical axis) evolving in time (horizontal axis).   The expected future midpoint 

(i.e., the option value) is shown in green.  It evolves over time as the stock price, which is 

not shown, also evolves.   We assume that the current quote midpoint (grey) eventually 

converges to the future expected midpoint (green) implied by the current price of the 

underlying.  Execution timers will wait until the expected quote midpoint approaches the 

bid price (dark blue) to execute their sell trades, indicated by solid blue arrows.  In this 

illustration investors timed their sales well because if they had waited longer the bid price 

they receive would have decreased.   
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This example also illustrates why conventional measures of the bid-ask spread 

and price impact that use the current quote midpoint overestimate trading costs.  Because 

the conventional measure of the effective spread uses the quote midpoint, it assumes that 

the sell trades in the figure incur the same costs as hypothetical buy trades executed at the 

same time. However, such buy trades are a poor trading decision because the investor 

could have waited for the expected decrease in price to take place and then buy at a better 

price.  That is, the conventional measure of the effective spread fails to account for price 

predictability. More specifically, when the sell trades occur the current quote midpoint is 

above its expected future value, which is the estimate of option value.  Using the higher 

current quote midpoint as a proxy for the option value overstates the effective spread and 

price impact of the trade.   The quote midpoint is on average significantly higher than its 

expected value at the time of sell trades, and price will decrease even if no sell trades 

occur.   

Figure 2 uses the data to show that investors do in fact actively engage in 

executing timing: they buy right before the price is expected to increase and sell before it 

is about to decrease.  The red line shows the predicted change in option price based on 

public information immediately before a trade computed using Eq. (3) with a 10-minute 

horizon.  The predicted change is plotted as a function of the signed trade size, in dollars.  

For positive signed trade sizes the option price is expected to increase by approximately 

one cent, ranging from slightly below one cent for small trades to slightly above one cent 

for large trades.  Following negative signed trades the expected option price change 

ranges from0.5 cents to almost 1.5 cents, with the price change being about 1 cent 

for much of the range of trade sizes.  The blue line shows the option price changes during 

the 10 minutes following a set of simulated trades for the same option and date at random 

times that do not overlap with the 10 minutes periods following the time of an actual 

trade.   As expected, the average option price changes following these trades are close to 

zero. The difference between the red and blue lines is due to execution timing.   

The green line shows the change in the option price midpoint from the time of a 

trade until 10 minutes after the trade.  The predicted price change conditional on a trade 

(the red line) has the same sign as the actual change (the green line) but is smaller 



13 
 

because not all traders time executions and because option prices change due to inventory 

and adverse-selection impacts as discussed further in Section 4.2.     

3.4 What fraction of trades reflects execution timing? 

The difference between the expected future price from the regression model ෠ܲ௧ାఛ,௜ 

and the current quoted price ௧ܲ,௜, computed for each trade and adjusted for the trade 

direction, is a measure of execution timing (ET). We normalize the difference by the 

effective bid-ask half-spread at the time of a trade to express the benefits of the execution 

timing as a percentage of one measure of trading costs. The following equation 

summarizes the definition: 

2/SpreadAsk  Bid Effective

)ˆ(
  buy/sell,,

t,i

itit
i

IPP
ET


   ,                              (4) 

where Ibuy/sell = 1 if the ith trade is buyer-initiated and  1 if it is seller-initiated. The 

larger the execution timing measure is for a trade, the more likely it is initiated by a trader 

who times executions.  

This measure provides a lower bound estimate for the extent of execution timing. 

Although our regression model captures the first-order variation in the expected price 

changes, some investors may develop a better predictive model. In this case, a better 

model will find opportunities to trade at low costs that a simpler model will miss. That is 

why, similarly to the quote midpoint versus the implied price case, the expected price for 

a better model will be systematically above the one from a simpler model for buyer-

initiated trades.  

Using this measure, we can estimate the share of trades initiated by execution 

timers.  While execution timers submit their buy (sell) trades when the expected change 

in price is positive (negative), for other traders who do not time executions the price is 

expected to stay the same on average. We use the idea that these other traders have zero 

execution timing to estimate the market share of execution timers. Indeed, assuming that 

execution timers do not trade when the expected change is negative, all the trades with 

negative timing are initiated by others. If the distribution for the expected price changes 

for other trades is symmetric around zero, then the distribution can be reconstructed as a 

mirror reflection of the negative part which is observed. Thus, the total number of trades 
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not reflecting execution timing is simply twice the number of trades with negative timing.   

Subtracting this quantity from total number of trades, we can obtain an estimate of the 

number of trades reflecting executing timing. Thus, market share of trades reflecting 

execution timing can be computed with the following formula: 

TradesofNumber Total

2
1TimingExecution  of Share 1 
 iETI

  ,              (5) 

where IA is an indicator function for the set A.  Using this approach, we estimate that 

share of trades initiated by execution timers increased from 27.5% at the start of our data 

period in April 2003 to 54% in late 2006 as reported in Figure 3 and Table 4. These 

percentages can be considered lower bounds on the amount of algorithmic liquidity 

taking in the options market because not all algorithmic liquidity taking will reflect 

execution timing. 

This result implies that by the end of our sample most of the trades are originated 

by sophisticated traders such as proprietary trading firms, hedge funds, and institutional 

investors who either have their own execution algorithms or have access to brokerage 

firm execution algorithms.  Although the idea underlying execution timing is simple, only 

these investors have access to the technology needed to implement it.  The estimated 

fraction of execution timers provides a lower bound for the fraction of such investors in 

the options market because the inherent limitations of the regression model cause it 

underestimate the prevalence of execution timing and because some sophisticated 

investors do not time executions of some or all of their option trades.  Overall, these 

estimates are inconsistent with a common view that retail investors are responsible for 

most of option trading, and also suggest that the recent growth in option volume was 

driven primarily by professional investors entering the market. 

4. Biases in Measures of Execution Costs and Price Impact  

This section shows how conventional measures systematically overstate options 

trading costs and estimates of price impact when prices change predictably and options 

investors engage in execution timing 

4.1 Effective spreads 
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Theoretical literature emphasizes that measures of trading costs should rely on the 

best estimates of securitie’s fair market values.   The expected future price from the 

regression model is the best linear estimate of this kind and thus should be used. 

However, the empirical literature overwhelmingly uses the current quote midpoint 

instead of its expected future value, implicitly assuming that price changes are 

unpredictable.  Although the quote midpoint is a less precise estimate of the option value 

than the expected future quote midpoint, this does not create any bias if traders have no 

or limited ability to time executions. Indeed, the quote midpoint at a random moment is 

equal on average to its future value.  

However, the situation differs in markets in which it is possible to time 

executions.  Although the quote midpoint at a random moment is unbiased, it is biased at 

the time of a trade by a trader who times executions.  As a result, conventional ex-ante 

measures of the bid-ask spread overstate trading costs.  This bias can be corrected by 

replacing the quote midpoint with its expected future value from a regression model, i.e. 

the usual effective spread measure 2ܫ஻/ௌሺܶ ௧ܲ െ ௧ܲሻ is replaced by the adjusted effective 

spread 2ܫ஻/ௌሺܶ ௧ܲ െ ෠ܲ௧ାఛሻ, where TPt is the trade price at time t and tP̂ is the estimate of 

the midpoint at time t + .   

Consider an example. Suppose that a call option is trading at 1.0/1.1 dollars 

bid/offer, and the quote midpoint is expected to increase by 1 cent in the next minute 

from 1.05 to 1.06 dollars. An investor wants to buy at the ask price because the price is 

about to increase. The conventional measure of the effective half-spread for this trade is 5 

cents (1.10 – 1.05), while the actual cost as measured by the adjusted effective half-

spread is only 4 cents (1.10 – 1.06). 

Table 5 reports different trade-weighted measures of the spreads for each stock in 

our sample, along with the averages across stocks (at the top of the table).10 The column 

headed “Avg. Quoted” reports the average daily quoted spreads based on the NBBO.  

This average is computed by assigning to each option trade the average quoted spread for 

the day, where the quoted spreads are computed separately for each option from one-

                                                 
10 The overall average spread measures in this table differ from those in Table 4 due to a difference in the 
way the averages are computed.  The average spreads in the first row of Table 5 are averages across stocks, 
where each stock is weighted equally. The average in Table 4 are across months, and do not include the 
stocks that dropped from the sample in the months after the stocks dropped. 
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second snapshots on each day.  These reflect trading costs for an investor who trades at 

random times.11    The overall average of 8.4 cents in the first row indicates that such an 

investor pays 8.4 cents for a round-trip trade or 5 percent of an average option price of 

1.70 dollars.  Investors can reduce the costs by trading when the quoted spread is 

narrower, and trades tend to occur when quoted spreads are less than average.  The 

column headed “Average Quoted at Time of Trade” shows that the average quoted spread 

at the time of a trade is 6.6 cents per share.  The average effective spread in the next 

column is the doubled difference between the trade price and the quote midpoint.  It is 

just a bit smaller, 6.4 cents per share, reflecting the fact that occasionally trades occur 

inside the quoted spread, though this is not frequent as more than 80% of option trades 

are executed at the NBBO quotes.  The next column shows the average realized spread. 

The next two columns headed “Adjusted, BSM” and “Adjusted, Regression” 

show adjusted effective bid-ask spreads based on the simple regression model using only 

the difference between the BSM implied option price and the quote midpoint (Eq. 2) and 

the more general regression model (Eq. 3), respectively.  The adjusted-effective bid-ask 

spread is twice the difference between transaction price and the expected price implied by 

the predictive model.  The overall average estimate of the adjusted effective spread based 

on the regression model in the column “Adjusted, Regression” is 4.5 cents, which is 30% 

less than the conventionally measured effective spread and 46% less than the average 

quoted spread.  The spread computed using the BSM implied option price is even 

smaller, 4.2 cents, which is only half of the quoted spread. The execution timing affects 

not only the level of trading costs but also the relative stock ranking. For example, Pfizer 

and QLogic have the same adjusted-effective spreads of 4.3 cents, but very different 

quoted spreads of 7 and 9.8 cents.  

These results indicate that option trading costs are much lower than indicated by 

either quoted or conventionally measure effective spreads. Execution timing is essential 

for trade execution and significantly reduces trading costs.  Further, these results are 

based on all trades, including trades executed by investors who do not engage in 

                                                 
11 The literature mostly uses the end-of-the-day bid-ask spread from OptionMetrics, which is a special case 
of the average quoted spread with only one observation per day. 
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execution timing.  The execution costs of traders who are able to time executions are 

lower still.  

The role of the execution timing increased substantially during the sample period 

as execution algorithms improved and their share increased. Figure 4 shows that the 

adjusted effective spread decreases from 6.5 cents to 3.5 cents while the average quoted 

spread remains approximately unchanged at about 8 cents, and the effective spread 

modestly decreases from 7.5 to 6 cents. Thus, the adjusted-effective spread decreases by 

almost half while the conventional spreads change little. Several time-series properties of 

the average spreads are worth noting.  Although trading costs for any particular stock are 

quite volatile, their market average fluctuates in a narrow range. Thus, trading cost 

volatility seems to be diversifiable at least during normal times. The average spreads 

follow a long-term trend and display little volatility clustering.  

The adjusted effective spread is similar to the realized spread, with the difference 

being that the realized spread uses the actual post-trade midpoint ௧ܲାఛrather than the 

estimate ෠ܲ௧ାఛ.  However, it has several advantages over the realized bid-ask spread. First, 

the adjusted spread is an ex-ante measure that can be used for trade execution. Second, 

the realized spread reflects not only trading costs but also the information and inventory 

impacts of a trade making it hard to disentangle these effects, while the adjusted spread 

only measures trading costs. Finally, the realized spread provides a more volatile estimate 

of trading costs because future price is more volatile than its forecast.  

4.2 Measures of Price Impact 

Prices respond to trades swiftly and by large amounts.  The two columns of Table 

6 headed “Observed Price Impact, Cents” show the conventional price impact measures 

஻/ௌሺܫ ௧ܲାத െ ௧ܲሻ	for the various stocks in our sample using horizons ߬ of one and ten 

minutes.  The averages for the two different horizons across stocks are shown in the first 

row of the table.   These results show that, on average, the quote midpoint moves by 1.13 

and 1.34 cents in the first one and ten minutes after a trade, which is  large relative to the 

$1.70 average option price.  

However, conventional measures of price impact significantly overestimate the 

causal effect of trades on prices, for the same reason that conventionally measured 
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effective spreads do.  Eq. (6) decomposes the observed price impact into the correctly 

measured price impact of a trade, and the expected change in the quote midpoint if no 

trade occurred:12  


Change Price ExpectedImpactPriceImpact Price Observed

ˆˆ
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t
t

t
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                            (6) 

Further decomposing the price impact into components due to asymmetric information 

and inventory risk, we obtain 
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where ߙ஺ூ ൅ ூோߙ ൌ 1 

In the options market, the expected price change is of roughly the same magnitude 

as the correctly measured price impact of a trade if one uses a short horizon of one 

minute and is larger than the correctly measured price impact if one uses a horizon of ten 

minutes.  Specifically, in Table 6 the pair of columns headed “Observed Price Impact” 

report estimates of conventionally measured price impacts for horizons of one and ten 

minutes for each of the stocks in the sample, as well as the averages across stocks.  The 

pair of columns headed “Expected Price Change” and “Ajusted Price Impact” report 

estimates of the expected price changes and correctly measured adjusted price impacts for 

each of the stocks in the sample for the same horizons.  For the one minute horizon the 

average expected price change is 0.47 cents, which is 42% of the conventionally 

measured price impact of 1.13 cents, and the correctly measured adjusted price impact is 

only 0.66 cents, or 58% of the conventionally measured price impact.  For the 10 minute 

horizon, the average expected price change is 0.82 cents, which is 61% of the 

conventionally measured price impact of 1.13 cents, and the correctly measured adjusted 

price impact is only 0.52 cents, or 39% of the conventionally measured price impact.  (In 

untabulated results using only the BSM implied option price with Eq. (2) we find that 

even without a trade the quote midpoint would move by 1.08 cents over the 10-minute 

horizon, which is 81% of the observed price impact of 1.34 cents.) Thus, although it is 

                                                 
12 Price impact is adjusted for the trade direction everywhere in the paper. The expected part is estimated 
from a predictive model but with a smaller time horizon (for example, ten minutes) than commonly used in 
price impact measures.  
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tempting to attribute the large conventionally measured price impact to informed trading, 

in fact, over a horizon of 10 minutes the expected price change constitutes the majority of 

the conventionally measured price impact.  The additional decomposition in Eq. (7) 

makes clear that the expected price change is large relative to the effects of both 

asymmetric information and inventory risk.  

How price impact changes with trade size is of particular interest for identifying 

informed trading. Figure 6 shows the conventionally measured price impact exceeds one 

cent even for small trades. It is increasing for small trades and is almost flat (at 

approximately two cents) for trades of more than thirty contracts. But the most 

pronounced pattern, which is discussed in Section 6, is that trades of round (divisible by 

10) sizes have significantly lower (by half a penny) price impact than non-round trades. 

To identify the causal impact of trades on prices the observed price impact should be 

adjusted by subtracting the expected price changes.  These adjusted price impacts based 

on both the regression and BSM models are shown in Figure 7. Using the regression 

model, the adjusted price impacts are much smaller and now increase steeply with trade 

size.  The BSM-adjusted price impacts are even smaller, and have many desired 

properties.  They start almost from zero as trades of one contract have an adjusted price 

impact of only 0.07 cents.  The BSM-adjusted price impacts increase monotonically to 

about 0.6 cents. Also, as discussed in Section 5, the differences between the price impacts 

of round and non-round trades disappear. 

We use regression analyses to study how the observed and adjusted price impacts 

depend on trade characteristics. The first three columns in Table 7 shows the results from 

three different regressions of the observed price impact over a ten minute horizon 

following the trade on a number of variables, including the absolute value of the option 

delta (||), the square root of the time to option expiration ( tT  ), a dummy variable 

taking the value of one if the option traded is a call (ICall), a time trend measured in years 

(TimeTrend), the option bid-ask spread measured in cents (Bid-Ask), a dummy variable 

taking the value of one if the trade is a purchase (IBuy), the square root of the trade size 

measured in contracts ( Size ), a dummy variable taking the value one if the trade size is 

one contract (ISize = 1), the number of option exchanges at the NBBO on the side of the 

market where the trade occurred (#ExchAtNBBO), a dummy variable taking the value 
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one if there is only one exchange at the NBBO on the side of the market where the trade 

occurred (I#Exch = 1).  Two of the specifications also include the predicted price change 

from the regression model,  t
tP̂ , and one of the specifications includes dummy 

variables taking the value one if the expected quote change based on the regression model 

is between zero and two cents, two and five cents, and greater than five cents ( 20
ˆ


 x

t
t IP  , 

52
ˆ


 x

t
t IP  , and x

Tt
t IP 
 5

ˆ , respectively).  In the first specification that does not include 

any of the expected price change variables  t
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the most important variables are the two variables #ExchAtNBBO and I#Exch = 1 describing 

the state of the options limit order book.   The coefficients of0.571 and 0.562 on these 

variables indicate that for buy (sell) trades, the price impact decreases (increases) by 

0.571 cents with each additional exchange at the ask (bid) price and increases (decreases) 

by 0.562 cents if a single exchange quotes the best ask (bid) price. Turning to the other 

coefficient, the time trend is very strong: the observed price impact increases by 0.55 

cents each year. Price impact is increasing in trade size, but the impact of a trade of 100 

contracts is only 19.0100019.0  cents.  The coefficient for the level of the option 

price is small (0.158), validating our approach of measuring option price impact in dollar 

terms.  

The second column reports the results of a specification that also includes  t
tP̂ , 

the predicted price change from the regression model.  The estimated coefficient on this 

variable is large, 0.776, and highly significant (t-statistic = 66.92), confirming that much 

of the conventionally measured price impact is explained by the expected price change 

based on public information.13  Including this variable in the regression has important 

impacts on many of the other regression coefficient; for example, the coefficients on the 

variables  #ExchAtNBBO and I#Exch = 1 describing the state of the options limit order book 

change from 0.571 to 0.198 and from 0.562 to 0.194, respectively. The third column 

also includes the variables  20
ˆ
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t
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ˆ  that capture non-

linearities in the relation between the observed price change and the regression-based 

                                                 
13 In a univariate regression that includes only  t

tP̂  on the right-hand side the estimated coefficient on 

this variable is 0.92. 
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forecast of the price change.  The estimated coefficients on these variables are highly 

significant, and the coefficient on  t
tP̂  is reduced to 0.584. 

The fourth column reports results for a specification in which the left-hand side 

variable is the BSM-adjusted price impact BSM
t

t
t PP ˆ  .  Strikingly, for the BSM-

adjusted price impact, most of the coefficients on the independent variables become 

much smaller in magnitude and the R2 drops to zero.  For example, the coefficient on the 

number of exchanges at the NBBO, #ExchAtNBBO, decreases from0.572 in the first 

specification to 0.058, and the coefficient on I#Exch = 1 decreases from 0.562 to 0.006 

and becomes insignificant. These observations together with the analysis of round and 

non-round trades in Section 6 are consistent with the hypothesis that option market-

makers and algorithmic traders time executions using the BSM model or a similar 

approach. 

4.3 Effective spreads of traders who do and do not time executions 

We now turn to estimating the spreads of liquidity-taking trades that do and do 

not reflect execution timing and examining how they changed during our sample period. 

 Our approach to estimating the spreads of liquidity-taking trades that do and do 

not reflect execution timing is based on the tautological assumptions that (a) liquidity-

taking trades executed by traders who time executions have non-negative execution 

timing, and (b) liquidity-taking trades by traders who do not time executions have no 

execution timing ability.  We used these assumptions above to identify the shares of 

liquidity-taking trades by execution timers and non-timers.   In particular, each trade is 

assigned a probability of being initiated by an execution timer. Our approach consists of 

two steps. First, we recover the empirical distribution of execution timing for the 

liquidity-taking trades that do not display execution timing. The second assumption (b) 

implies that the average execution timing should be zero or close to zero and its 

distribution should be symmetric around zero in a large sample of trades by traders who 

do not time executions  Thus, only trades by traders who do not time executions can have 

non-positive execution timing.  We use this subsample of trades with non-positive timing 

to infer the left half of the probability distribution for the execution timing of non-

algorithmic traders.  Because the distribution is symmetric, estimating its left side is 
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equivalent to recovering the entire distribution. In the second step, we combine the 

execution timing distributions for all trades fAll(ET) and the trades of non-timing investors 

fNon-timer(ET) to infer the execution timing distribution for the traders who do time 

executions  fTimer(ET). Finally, the probability that trade i with execution timing ETi  is 

initiated by a non-timer is 

)()(

)(
)timer-Non(

TimertimerNon

timerNon

ii

i
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ETf
iP






 ,                        (8) 

 where  f(•) is the empirical density function. According to our assumptions, all trades 

with non-positive execution timing are initiated by non-timers. The likelihood that a trade 

is initiated by a trader who does not time executions decreases with the level of execution 

timing and is close to zero for trades with large positive execution timing. Appendix A 

explains the details of our approach.  

Using this approach, we estimate the adjusted and conventional effective spreads 

for traders who do and do not time executions, and also the overall average spread, for 

each 20-day period that falls within our total sample period.  Panel A of Table 4 reports 

adjusted effective spreads for the first and last 20-day periods (“months”) of our sample 

period, as well as the overall averages in the row labelled “All Months.”  Panel A also 

reports the percentage of trades initiated by execution timers in the rightmost column.  

 As expected, traders who time executions pay significantly lower adjusted spreads 

than non-timers.  The overall average adjusted effective spread paid by execution timers 

was 1.3 cents, compared to an overall average of 6.2 cents for traders who do not time 

executions.  The adjusted effective spreads they paid decreased during the sample period 

from 1.9 to 1.1 cents per share, or by 0.8 cents per share.  The adjusted effective spreads 

paid by non-timers also declined, from 6.8 to 6.0 cents per share.  This decline in adjusted 

effective spreads paid by non-timers (and the similar reductions in Panel B) suggests that 

the reduction in effective spreads paid by execution timers was not driven by 

improvements in their ability to time executions, but rather by a decline in the average 

level of quoted spreads.   The adjusted effective spread for the combined population of 

timers and non-timers in the column headed “All” declined from 5.5 to 3.5 cents per 

share, primarily driven by the increase in the proportion of trades that reflected execution 

timing from 27.5% to 54.0% of trades.  
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 The striking results in Panel A are that the adjusted effective spreads paid by 

traders able to time executions averaged only 1.3 cents per share.  Panel B of the same 

table shows that the conventional effective spread for the same set of traders was 6.2 

cents, and thus overstates their trading costs by a factor of almost five!  By the end of our 

sample period the adjusted and conventional spreads were 1.1 and 6.0 cents per share, 

respectively.  The conventional measure of effective spreads gives a strikingly misleading 

answer about the option trading costs of professional traders who are able to time 

executions. 

5. The pattern of option bid-ask spreads 

Execution timing explains the main stylized fact about option bid-ask spreads, 

namely why dollar spreads increase so much in option moneyness. Figure 5 shows that 

for OTM options the average quoted spread is below 7 cents, while for ITM options the 

average quoted spread is 11 cents. By contrast, the adjusted effective spread is much 

flatter and increases from 4 to only 6 cents. For large trades, the relationship becomes 

completely flat with a 5 cent spread for ITM options. The residual 1.5 cent difference 

between ITM and OTM options is likely due to the initial hedging costs. Cho and Engle 

(1999) argue that option market makers immediately delta hedge after each trade and thus 

pay the spread in the underlying stock, which in our sample is 1.4 cents.  To provide 

context for this result, Petrella (2006) shows that the initial-hedging theory of Cho and 

Engle (1999) cannot explain the difference between the spreads of ITM and OTM options 

because equity spreads are small. Explanations in terms of the costs of hedge rebalancing 

(Kaul, Nimalendran, and Zhang, 2004) also cannot explain the high spreads of in-the-

money options because these options are precisely the ones for which hedge rebalancing 

is not needed.  Nor can adverse selection about volatility information because the values 

of well in-the-money options are not exposed to the risk of changes in volatility. The 

execution timing ability of algorithmic liquidity takers is the only story that explains why 

option bid-ask spreads increase in the absolute value of option delta. 

Finally, we also study how the execution timing bias measured by Eq. (4) depends 

on trade characteristics. Table 8 presents the results of several different specifications in 

which the execution timing bias is regressed on variables that describe the option trade 
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and the state of the limit order book at the time of the trade.  (These are the variables used 

in the regressions reported in Table 7, with the exception of the predicted price change 

and the other variables constructed from the predicted price change.)  The timing bias is 

increasing in absolute value of the option delta because ITM options are more sensitive to 

changes in the underlying price and thus more exposed to execution timing.  The average 

timing bias is 0.38 (or 38%), and the change from OTM (delta=25) to ITM (delta=75) 

increases the bias by 10%. Option market makers are aware of this effect as absolute 

delta becomes insignificant after controlling for the number of exchanges quoting the best 

price. The timing bias increases by 16% each year reflecting the growth in algorithmic 

trading. As expected, the number of exchanges quoting the best price in the direction of a 

trade is a significant determinant of the bias, with each additional exchange reduces the 

bias by 20%. In a special case of only one exchange quoting the best price the execution 

timing bias is larger by an additional 15%. The effects of the other explanatory variables 

are economically small. 

6. Trades of round and non-round size  

We compare the price impacts of trades of similar round and non-round sizes, for 

example trades of 30 contracts versus trades of 29 or 31 contracts.  A trade is defined to 

be round if the trade size (in contracts) is greater than 15 and divisible by 10.  Non-round 

trades are more likely to originate from execution algorithms and thus more likely to 

display execution timing.  Human traders prefer round numbers and are more likely to 

acquire the target position in a single trade, implying that their trades will frequently be 

of round size. On the other hand, use of algorithms is likely to be correlated with the use 

of more sophisticated strategies in which trade size is determined by computations that do 

not result in round trade sizes. Also, execution algorithms sometimes split the target trade 

size into multiple child orders to minimize price impact and to take advantage of the 

quantities available at the best bid or offer quotes.    

As discussed in Section 4.2, the conventionally measured price impact has three 

components: inventory risk, asymmetric information, and the expected price change due 

to execution timing (see Eq. 7).  Round and non-round trades of similar size (for 

example, 30 vs. 29 or 31) carry similar amounts of inventory risk.  The hypothesis that 
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execution timing biases conventional measures of trading costs implies that non-round 

trades should have greater conventionally measured price impact as compared to 

similarly sized round trades, unless round trades reflect more information.  Failure to find 

this would be evidence inconsistent with the claim that execution timing has important 

impacts on measures of price impact, again unless round trades contain more information. 

Thus, the comparison of round and non-round trades provides a test of the importance of 

execution timing that is not dependent on the BSM and regression models that we use to 

forecast option price changes.  In addition, the adjusted price impacts computed using our 

models predicting price changes provide measures of the differences in information 

between non-round and round trades.  

Figure 6 plots the average conventionally measured price impact for each trade 

size, along with the average expected price changes computed using the BSM and 

regression models.14  Close examination of the line showing the average conventionally 

measured price impacts reveals that it has downward spikes at round trade sizes.   The 

line also has smaller downward spikes for round-five trades, defined as those for which 

the trade size (in contracts) is greater than 15 and divisible by five.  The downward spikes 

are approximately the same size for each round size, except that the downward spike for 

trades of 100 contracts is larger than the others.  

The first column of results in Table 9 estimates the differences in the 

conventionally measured price impacts of round and round-five trades as compared to 

non-round trades by regressing the price impacts on a dummy variable that take the value 

of one for round trades and a second dummy variable for round-five trades that are not 

also round trades.  The regression also includes as control variables several functions of 

trade size, measured in contracts, and the option price.   The coefficient on the dummy 

variable for round trades is 0.411, indicating that the price impact of round trades is 

about 0.4 cents smaller that for non-round trades. This is a significant fraction of the 

average price impacts, which are 1.4 and 1.8 cents for round and non-round trades, 

respectively.  Figure 6 indicates that the difference in the price impact of round and non-

round trades is approximately the same for each round number, except that the difference 

                                                 
14 Of trades larger than fifteen contracts, 60% have size divisible by ten which is six times larger than 
would be implied by a uniform probability distribution over trade sizes. It is difficult to explanation for 
why there are so many round-ten trades. 
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is larger for trades of 100 contracts. These results cannot be explained by an inventory 

effect, as round and non-round trades of similar sizes should have the same inventory 

risk, but are consistent with the hypothesis that execution timing is a large fraction of 

conventionally measured spreads.  They are also consistent with the hypothesis that non-

round trades contain more information about option values.  

For the round-five trades the estimated coefficient is 0.199, indicating that the 

conventionally measured price impact of round-five trades is about 0.2 cents less than the 

non-round five trades.  Perhaps coincidentally, the magnitude for round-five trades is half 

the magnitude for round-ten trades.  

Examination of the other two lines in Figure 6 reveals that the expected price 

changes based on the BSM and regression models display downward spikes at the round 

and round-five trade sizes, the same locations as the downward spikes in the 

conventionally measure price impacts.  That is, the variation in the conventionally 

measure price impact is matched by corresponding variation in the expected price 

changes based on public information computed from the BSM and regression models.  

From the figure, it appears that a large fraction of the variation in the conventionally 

measured price impact is explained by variation in the expected price changes computed 

using the two models.   

Figure 7 pursues this issue by showing the adjusted price impacts based on the 

regression and BSM models.  As in Section 4 above, in each case the adjusted price 

impact is the difference between the conventionally measured price impact and the model 

forecast of the price change at the time of the trade.  The downward spikes at round 

trades in the adjusted price impacts based on the regression and BSM models are either 

smaller or much smaller than those in Figure 7.  The second and third columns of Table 9 

report the results of regressing the adjusted price impacts on the dummy variables for 

round trades and round-five trades that are not also round trades and the controls.  The 

magnitude of the round trade effect in the adjusted price impacts based on the regression 

model decreases from 0.414 to 0.126 cents and the magnitude of the round-five effect 

in the regression-adjusted price impacts decreases from 0.199 to 0.045 cents. The 

results in the third column show that adjusting the price impacts using the BSM model is 

even more effective—the differences in the BSM-adjusted price impacts between round 
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and non-round trades are small and not significantly different from zero. Strikingly, as 

shown in Figure 7 the BSM model eliminates the difference not only jointly but for 

almost any round size, with the larger round trades of size 90 and 100 being exceptions.  

If non-round trades contain more private information than round and round-five 

trades, then the difference in the adjusted price impacts would remain large regardless of 

the execution timing model used to adjust the price impacts.  On the other hand, if non-

round trades do not contain more private information than round and round-five trades 

and one carries out the adjustment using the execution timing model used by algorithmic 

traders then the adjusted price impacts of round and non-round trades will be the same. 

Our finding that the differences between the price impacts of round and round-five trades 

as compared to non-round trades disappear after the price impacts are adjusted using the 

BSM model to account for the expected changes in price implies that non-round trades do 

not contain more private information than round and round-five trades.    The larger 

observed price impact of non-round trades is entirely driven by their execution timing 

ability, and non-round trades contain the same amount of private information as round 

trades. 

Our results also indicate that algorithmic traders who take liquidity and time 

executions use the BSM model, or something similar to it, for execution timing.  The 

BSM-adjusted price impacts also have two other desirable properties that the regression-

adjusted price impacts do not share.  First, they start from almost zero for small trades 

and increases smoothly in size, as shown in Figure 7.  Second, unlike other price impact 

measures, the BSM-adjusted price impacts do not depend on the number of NBBO 

exchanges and the time trend (last column of Table 7).  

Because the round and non-round trades of similar sizes contain the same amount 

of private information, the estimates of the differences in price impacts provides a model-

free lower bound for the difference in costs of taking liquidity between algorithmic and 

non-algorithmic traders.  They prove a lower bound because algorithms submit both 

round and non-round trades, so that the round trades are not submitted exclusively by 

non-algorithmic traders. The large difference in price impacts eliminates a possible 

concern that our results are somehow mechanically driven by a particular model for the 

expected option price change.  Overall, the round-trade analysis clearly shows that price 
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impact measures should be adjusted to account for the expected changes in price to avoid 

spurious results about informed trading and inventory risk. 

7. Conclusion 

We show that execution timing is an important part of option trading. The 

conventional measure of the effective spread overestimates the average costs of taking 

liquidity by about 30% and the quoted spread overstates the cost of taking liquidity by a 

factor of almost two.   For the traders who are able to time executions the costs of taking 

liquidity are even lower.  By the end of our sample period the trading costs as measured 

by the adjusted effective spreads of the traders able to time executions were 1.1 cents per 

share, less than one seventh of the average quoted bid-ask spread and about one fifth of 

the conventionally measured effective spread of the same set of traders. The conventional 

measure is biased because it relies on the quote midpoint as a benchmark, whereas traders 

who are able to time executions tend to trade at times when the quote midpoint differs 

systematically from the option value and publicly available information indicates that 

option prices are expected to change. We show how to correct this bias by replacing the 

quote midpoint in these measures with the expected future value of the option based on 

publicly available information.   

The conventional measure of price impact also uses the quote midpoint, and 

overstates price impact by a factor of about two.   

Our finding that that by the end of our sample period 54% of option trades exploit 

ability to time executions indicates that most option trading is done by sophisticated 

proprietary traders or institutional investors who either possess execution algorithms or 

have access to brokerage firm execution algorithms, and also suggest that the recent 

growth in option volume was driven primarily by professional investors entering the 

market. 

Our results about trading costs are important for studies that document option 

pricing anomalies and then examine their profitability after taking account of transactions 

costs. They also help explain why option trading is so popular despite wide quoted option 

spreads—for the majority of traders, the costs of taking liquidity are much less than 

quoted spreads. Finally, we show that execution timing explains the puzzle of why dollar 
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spreads of in-the-money options are so much larger than those of at- or out-of-the-money 

options.   

Our results also have policy implications for market design.  In classic models of 

asymmetric information such as Copeland and Galai (1983), market-makers set the bid-

ask spread so that losses from trading with against some traders are subsidized by gains 

from trading against others, including retail investors.  The differences in execution 

timing ability imply that the realized spreads of the traders who are and are not able to 

time executions differ.  This in turn implies that execution timing by some traders 

increases the trading costs of those who are not able to time executions.  This observation 

immediately implies that the quoted bid-ask spread would be smaller without execution 

timing or, more generally, if the asymmetry between timing and non-timing traders is 

reduced. The asymmetry friction is driven not by private information, but by the ability to 

quickly process public information. One possible solution is to quote option prices in 

implied volatilities rather than dollar terms, as implied volatilities are less sensitive to 

changes in the underlying price than are option prices. A less radical solution would be to 

encourage exchanges to introduce limit orders linked to implied volatility.  

Our approach for improving measures of trading costs by developing better 

estimates of value to use in place of the bid-ask midpoint is particularly well-suited to the 

option market because the prices of underlying stocks are key inputs to option prices, and 

at high frequency changes in stock prices predict changes in option prices. Nonetheless, it 

seems likely that the method can be extended to other markets in which there is value-

relevant high-frequency information that is reflected in market prices with even a slight 

lag.  For a stock, such value-relevant information might include, for example, returns of 

liquid stocks in the same industry or an industry exchange-traded fund. 
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Appendix A.  Likelihood that a trade is initiated by an execution timer 

As outlined in Sections 3.4 and 4.3, our approach to estimating the likelihood that 

a transaction is initiated by a trader who do not use execution timing, whom we call 

“non-timer” for brevity here, is based on the assumptions that (a) trades by execution 

timers have non-negative execution timing, and (b) trades by non-timers have no 

execution timing ability. The second assumption (b) implies that the average execution 

timing should be zero or close to zero and its distribution should be symmetric around 

zero in a large sample of trades by non-timers.   

First, we recover the empirical probability distribution of execution timing for 

trades of non-timers. Based on the assumption all trades with non-positive execution 

timing are initiated by non-timers, we estimate the left half of the distribution from the 

subsample of trades with non-positive timing. Specifically, in each 20-day period, we 

first use the linear regression model of execution timing (Eq. 3) to estimate the execution 

timing of each trade.  For each stock, we then sort the subsample of trades with non-

positive execution timing estimates into 20 equally-sized portfolios  P20 to P1, where 

portfolio 20 consists of the trades with the worst (most negative) execution timing and 

portfolio 1 consists of the trades with zero execution timing. The boundaries ET20:0 

(where ET0 = 0) and the number of trade observations ିܰଶ଴:ିଵ
௡௢௡ି௧௜௠௘௥ in the portfolios 

describe the negative/left half of the distribution of execution timing of non-algorithmic 

traders. Because the distribution is assumed to be symmetric, the 20 portfolios for the 

positive/right half of the distribution P1:20 will have the same number of observations 

(e.g., ଵܰ଴
ே௢௡ି௧௜௠௘௥ ൌ ିܰଵ଴

ே௢௡ି௧௜௠௘௥) and the same boundaries but with reversed sign (e.g., 

ܧ ଵܶ଴ ൌ െିܶܧ ଵ଴). Thus, we have extracted the distribution for non-timers. The 

distribution of execution timing for timers can be extracted by simply subtracting the 

estimate for the number of non-timer trades from the actual number of trades in each 

portfolio ଵܰ଴
்௜௠௘௥ ൌ ଵܰ଴

்௢௧௔௟ െ ଵܰ଴
ே௢௡ି்௜௠௘௥. By construction, the number will be zero for 

all portfolios with negative timing. Finally, the probability that a trade from i-th portfolio 

was initiated by non-timing investor is ሺ݅ ൌ ݊݋ܰ െ ሻݎ݁݉݅ܶ ൌ ௜ܰ
ே௢௡ି்௜௠௘௥/ ௜ܰ

்௢௧௔௟ .  
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Figure 1 Stylized example of execution timing  

The figure shows how option prices (vertical axis) evolve in time (horizontal axis). The 
current quote midpoint (grey) eventually converges to the future expected midpoint 
(green) implied by the current price of the underlying. Traders who time executions wait 
until the expected quote midpoint approaches the bid price (dark blue) to execute their 
sell trades (solid blue arrows). Here traders timed their sales well because if they waited a 
little bit more, the bid price would have decreased, increasing costs for sell trades. 
Conventional measures of the bid-ask spread and price impact that use the current quote 
midpoint overestimate trading costs because the quote midpoint is on average 
significantly higher than its expected value at the time of sell trades, and price will 
decrease even if no sell trades arrive.   
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Figure 2 Price changes and expected price changes conditional on signed trade size  

The red line shows the predicted change in option price based on public information 
immediately before a trade computed using Eq. (3) with a 10-minute horizon, as a 
function of the signed trade size, in dollars.  The blue line shows the option price changes 
during the 10 minutes following a set of simulated trades for the same option and date at 
random times that do not overlap with the 10 minutes periods following the time of an 
actual trade.  The difference between the red and blue lines is due to execution timing.   
The green line shows the change in the option price midpoint from the time of a trade 
until 10 minutes after the trade.  It differs from the red line because not all traders time 
executions and because option prices change due to inventory and adverse-selection 
impacts.   
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Figure 3 Adoption of algorithmic trading in the options market 
The fraction of trades that display execution timing computed using Eq. (5) and the 
regression model for expected price changes in Eq. (3). Each point on the graph 
corresponds to a 20-trading-day period.  Because it is likely that algorithmic traders 
sometimes execute trades without timing the executions, the estimates provide lower 
bounds on the fraction of liquidity-taking trades executed by algorithmic traders. 
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Figure 4 Changes in average quotes, conventional, and adjusted effective spreads over 
time 

The graph shows the evolution of the average quoted (black), the conventionaly 
measured effective (blue), and the adjusted effective (red) bid-ask spreads over the 
sample period. The adjusted-effective bid-ask spread is computed as twice the difference 
between the trade price and the expected future midpoint predicted by regression in Eq. 
(3). The effective spread is twice the difference between trade price and the quote 
midpoint. The average quoted spread is computed as an average of one-second quoted 
spread snapshots over the entire day for an option contract involved in a given trade 
transaction. Each point on the graph is an average across all option trades on a given day. 
The sample period is from April 2003 to October 2006. 
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Figure 5 Relations between various measures of the spread and option moneyness as 
measured by || 

The graph plots non-parametric estimates for five bid-ask spread measures as functions of 
the absolute of the option delta, ||. The spread measures are the average quoted spread 
on the day of an option trade (dash-dot black), the quoted spread at the time of the trade 
(blue), the effective spread (dashed blue), the adjusted effective spread (red line) based 
on the regression model, and finally, the adjusted effective spread for trades of at least ten 
contracts (dashed magenta).  The adjusted-effective bid-ask spread is computed as twice 
the difference between the trade price and the expected future midpoint predicted by the 
regression model in Eq. (3). The effective spread is twice the difference between trade 
price and the quote midpoint. The average quoted spread is computed as an average of 
one-second quoted spread snapshots over the entire day for the option contract involved 
in the trade transaction. The lines are estimated with a kernel regression based on the 
sample of 20 million trades for options on 39 stocks from April 2003 to October 2006. 
Option deltas are computed from the Black-Scholes-Merton formula.  
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Figure 6 Observed price impacts compared to regression and BSM estimates of expected 
price changes based on public information 

Observed price impact (blue) is measured as the difference between the quote midpoint 
ten minutes after a trade and the midpoint immediately before it. The expected price 
change based on the Black-Scholes-Merton model (black) is computed as the difference 
between the BSM implied option price and the pre-trade quote midpoint. The expected 
price change implied by regression in Eq. (3) (red) is computed as the difference between 
the expected future midpoint predicted by Eq. (3) and the pre-trade quote midpoint. The 
distribution of trade size is highly skewed (roughly exponential). Mean trade size is 42 
contracts, and its 50th and 95th percentiles are 10 and 114 contracts respectively. Trade 
size is reported in contracts, each on 100 underlying shares.  
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Figure 7 Price impact adjusted for expected price changes based on public information at 
the time of the trade 

Observed price impact is adjusted by the expected changes in the quote midpoint to 
extract the causal impact of trades. The Black-Scholes-Merton method (blue) assumes 
that the quote midpoint is expected to converge to the option price implied from the 
current price for the underlying. The regression method (red) estimates expected changes 
in price using the regression model in Eq. (3).   Each data point on the graph is computed 
as a simple average across all option trades of a given trade size. The distribution of trade 
size is highly skewed (roughly exponential). The mean trade size is 10, and its 50th and 
95th percentiles are 42 and 114 contracts respectively. Trade size is in contracts each on 
100 underlying shares. The smoothing of the BSM-adjusted price impacts (in black) is 
done using a kernel regression. 



40 
 

Table 1 Summary statistics  

The reported variables include the execution timing bias for the BSM and the regression 
methods as defined in Eq. (4), the observed price impact and the expected changes in the 
quote midpoint for the BSM and regression methods, the absolute value of the option 
delta, the square root of the option time-to-expiration measured in calendar days, a 
dummy taking the value one for a call option, a time trend, the option price and the bid-
ask spread, a dummy variable for buyer initiated trades, and and several measures derived 
from the option trade size in contracts. Round trades are trades with size divisible by ten 
and larger than 15.  The time trend is in calendar years and normalized to zero at the 
beginning of the sample period. #ExchAtNBBO is the number of exchanges quoting best 
price in the direction of a trade. Dummy variables taking the value one if condition x is 
satisfied are denoted Ix.  The table reports the mean and standard deviation and 25th, 50th, 
and 75th percentiles of the distributions of the variables. 
 
 
 

Variable Mean Std. Dev. 25% 50% 75% 

Timing Bias (BSM) 38% 78% 9% 29% 82% 

Timing Bias (regression) 32% 69% 6% 26% 70% 
 t

tP , 10minutes (cents) 1.31 5.80 0.00 0.00 5.00 
BSM

tP̂ (cents) 1.10 2.39 -0.29 0.91 2.32 
 t

tP̂ , 10minutes (cents) 0.84 1.79 -0.15 0.65 1.67 
|| 0.45 0.20 0.30 0.44 0.59 

tT   8.57 5.10 5.00 6.71 11.09 
D(Call) 0.64 0.48 0.00 1.00 1.00 

Time Trend 1.72 1.07 0.77 1.69 2.69 
Option Price ($) 1.70 1.94 0.60 1.10 2.10 
Bid-Ask (cents) 6.42 4.13 5.00 5.00 10.00 

IBuy 0.46 0.50 0.00 0.00 1.00 
Size  4.14 5.03 1.73 3.16 4.47 

ISize = 1 0.14 0.35 0.00 0.00 0.00 
ISize > 15 0.31 0.46 0.00 0.00 1.00 
IRound 0.18 0.39 0.00 0.00 1.00 

#ExchAtNBBO 2.97 1.85 1.00 3.00 5.00 
I#Exch = 1 0.34 0.47 0.00 0.00 1.00 
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Table 2 Prediction of future option price movements using the implied option price 

The table reports estimates of the slope coefficient 1 and the R2 from regressions  

tt
BSM

ttt PPPP   )ˆ(10  

of the change in the option quote midpoint on the Black-Scholes-Merton implied bias 

t
BSM

t PP ˆ .  The regressions are estimated separately for each stock and day using option 

quote midpoints observed at two minute frequency, and the table reports the time-series 
averages of the daily coefficient estimates for each stock. Estimates are reported for three 
time horizons: one minute, ten minutes, and one hour. All coefficient estimates are highly 
statistically significant, with t-statistics for the average coefficient estimates ranging from 
5 to 100, with a median value of 29.  The intercept is included in the regression model but 
is not reported.  
 

1 minute 10 minutes 1 hour 

Ticker Coeff. R2 Coeff. R2 Coeff. R2 

Average 0.54 22% 0.66 10% 0.66 3% 
Std. Dev. 0.11 5% 0.10 4% 0.12 2% 

AIG 0.46 18% 0.49 4% 0.49 1% 
AMAT 0.64 29% 0.77 14% 0.82 5% 
AMGN 0.61 23% 0.66 6% 0.58 1% 
AMR 0.44 18% 0.53 8% 0.49 2% 

AMZN 0.60 22% 0.67 6% 0.64 1% 
AOL 0.39 16% 0.62 14% 0.73 6% 
BMY 0.37 13% 0.51 7% 0.64 4% 

BRCM 0.66 24% 0.69 6% 0.64 1% 
C 0.55 26% 0.71 13% 0.71 4% 

COF 0.48 17% 0.53 4% 0.37 1% 
CPN 0.34 12% 0.50 13% 0.57 7% 

CSCO 0.55 24% 0.73 15% 0.76 5% 
DELL 0.61 28% 0.70 11% 0.73 3% 
EBAY 0.66 23% 0.69 5% 0.63 1% 
EMC 0.47 20% 0.65 16% 0.72 7% 

F 0.40 15% 0.59 14% 0.67 6% 
GE 0.52 24% 0.72 15% 0.75 5% 
GM 0.43 18% 0.55 7% 0.52 2% 
HD 0.64 30% 0.81 14% 0.78 4% 
IBM 0.62 26% 0.73 8% 0.69 2% 
INTC 0.54 23% 0.70 13% 0.74 4% 
JPM 0.51 23% 0.66 12% 0.73 4% 

KLAC 0.69 26% 0.76 6% 0.78 2% 
MMM 0.60 24% 0.69 7% 0.63 2% 

MO 0.36 14% 0.40 4% 0.34 1% 
MSFT 0.50 22% 0.65 15% 0.68 6% 
MWD 0.50 19% 0.58 6% 0.47 1% 
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NXTL 0.55 24% 0.63 9% 0.55 2% 
ORCL 0.54 23% 0.69 17% 0.72 7% 
PFE 0.41 17% 0.51 7% 0.57 3% 

QCOM 0.68 27% 0.74 7% 0.69 2% 
QLGC 0.66 26% 0.73 8% 0.70 2% 
QQQ 0.47 17% 0.73 11% 0.76 3% 

QQQQ 0.69 26% 0.82 13% 0.81 4% 
SBC 0.45 19% 0.63 12% 0.66 4% 
SMH 0.68 30% 0.81 11% 0.83 3% 
TYC 0.45 18% 0.58 10% 0.53 3% 

XLNX 0.69 29% 0.77 9% 0.78 2% 
XOM 0.62 29% 0.73 9% 0.65 2% 
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Table 3 Expected changes in the option quote midpoint 
Regression of changes in option quote midpoint for ten minutes and one hour horizons on the explanatory variables as well as lagged changes in 
the option and delta-adjusted stock quote midpoints.  

ti tititittiti it
BBO

tt
BSM

ttt dPdSPPPPPP      
12

1 16

12

1 443210 )(ExchAsk#ExchBid#)ˆ()ˆ(  

The explanatory variables include the BSM implied bias (the difference between the BSM-implied price and the NBBO quote midpoint), the 
difference between the average quote midpoint across all exchanges and the current NBBO quote midpoint (Average BBO Price – NBBO), and 
number of exchanges at the best ask and best bid. The regression is estimated separately for each stock and six absolute delta (0.35 and 0.65 cut-
offs) and time-to-expiration (60 days cut-off) bins within each day, average coefficients are reported. The lagged quote changes are based on 
twelve regularly spaced five-second time periods (only the first two and the sum of all twelve coefficients are reported). The regressions are based 
on the pooled sample of option quote midpoint snapshots with two minute time step. All price changes are measured in cents. 

Days-to-
Expiration 

Money
-ness 

Inter-
cept 

BSM 
Implied 

Bias 

Average 
BBO 

NBBO 

# 
Exchs. 
at Bid 

# 
Exchs. 
at Ask 

Stock price changes 
adjusted for option delta 

Changes in option quote 
midpoint 

 t 1 t  2 
Sum t1 
through 

t 12 
 t 1 t  2 

Sum t1 
through 

t 12 
R2 

 = 10 minutes 
short-term OTM -0.02 0.26 0.27 0.02 -0.01 0.38 0.24 1.84 -0.17 -0.15 -1.22 0.17 
long-term OTM -0.03 0.33 0.13 0.07 -0.07 0.39 0.25 1.90 -0.20 -0.18 -1.49 0.13 
short-term ATM -0.08 0.40 0.31 0.05 -0.05 0.39 0.24 1.78 -0.14 -0.13 -1.15 0.12 
long-term ATM -0.09 0.44 0.17 0.12 -0.11 0.40 0.25 1.91 -0.16 -0.15 -1.30 0.12 
short-term ITM -0.27 0.54 0.23 0.09 -0.07 0.32 0.19 1.28 -0.12 -0.12 -1.06 0.09 

long-term ITM -0.17 0.51 0.18 0.13 -0.11 0.32 0.19 1.34 -0.14 -0.14 -1.22 0.11 

 = 1 hour 
short-term OTM -0.04 0.31 0.39 0.11 -0.09 0.27 0.13 0.66 -0.07 -0.07 -0.63 0.18 
long-term OTM -0.08 0.42 0.29 0.12 -0.11 0.25 0.11 0.46 -0.09 -0.09 -0.77 0.13 
short-term ATM -0.15 0.45 0.44 0.07 -0.06 0.24 0.10 0.33 -0.08 -0.08 -0.82 0.10 
long-term ATM -0.16 0.53 0.32 0.10 -0.08 0.23 0.09 0.26 -0.08 -0.08 -0.74 0.08 
short-term ITM -1.03 0.63 0.33 0.06 -0.02 0.13 0.01 -0.42 -0.05 -0.06 -0.69 0.08 

long-term ITM -0.53 0.56 0.35 0.02 0.02 0.15 0.04 -0.27 -0.10 -0.10 -1.02 0.08 
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Table 4 Evolution of trading costs of investors who do and do not use execution timing  

The costs are measured by the adjusted effective bid-ask spread in Panel A and by the 
conventional effective spread in Panel B.  The adjusted effective spread is twice the 
difference between the trade price and the expected future quote midpoint (estimated by 
the regression model in Eq. 3 with a ten-minute horizon) and then adjusted for trade 
direction, i.e. 2ܫ஻/ௌሺܶ ௧ܲ െ ෠ܲ௧ା்ሻ. The effective spread is twice the absolute difference 
between the trade price and the midpoint immediately prior to the trade, i.e., 2|ܶ ௧ܲ െ ௧ܲ|. 
The first three columns report adjusted effective spreads for traders who time executions 
(“Timers”) and those who do not (“Non-Timers”) for the first and last 20-day periods 
(months) during the sample period as well as the average across all months. Each trade is 
classified as either initiated by an execution timer or by a non-timer. The last column 
reports the percentage of total trades initiated by algorithms computed using Eq. (5). All 
variables, except the percentage of algorithmic trades, are reported in cents.  
 
 
Panel A Adjusted Effective Spreads 
 

  Adjusted Effective Spread, Cents   Percentage 
of Trades 
Initiated 

by Timers  
  All Timers 

Non-
Timers 

  

First Month 5.5 1.9 6.8   27.5% 
Last Month 3.5 1.1 6.0   54.0% 
All Months 4.3 1.3 6.2   40.5% 

 
 
Panel B Conventional Effective Spreads 
 

   Effective Spread, Cents  Percentage 
of Trades 
Initiated 
by Timers 

  All Timers 
Non-

Timers 

First Month 6.8 6.7 6.8  27.5% 
Last Month 6.0 6.0 6.0  54.0% 
All Months 6.2 6.2 6.2  40.5% 
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Table 5 Option bid-ask spread measures by stock  
The average quoted spread is computed as an average of one-second quoted spread 
snapshots over the entire day for an option contract involved in a given trade transaction. 
The effective spread is twice the difference between trade price and the quote midpoint. 
The adjusted-effective bid-ask spread is computed as twice the difference between the 
trade price and the expected future midpoint predicted by regression in Eq. (3). The 
black-Scholes adjusted spread is twice the difference between trade price and option price 
implied from the price of the underlying and the lagged implied volatility as in Eq. (1). 
The last column reports the ratio between the adjusted effective spread and the average 
quoted spread. The average quoted spread significantly overestimates the costs of taking 
liquidity. All spreads are reported in cents. Number of observations for each stock is in 
thousands. An average and standard deviation across 39 stocks are reported at the top. 
 

Ticker 

# of 
obs., 

in 
1,000s 

Bid-Ask Spread, Cents Ratio of 
Adjusted 
to Avg. 
Quoted 
Spread 

Avg. 
Quoted 

Quoted 
at time 
of trade 

Effec
-tive 

Reali-
zed 

Adjusted, 
BSM 

Adjust-
ed, 
Reg-
ression 

Average  8.4 6.6 6.4 3.7 4.2 4.5 54% 

Std.Dev.  1.6 1.0 1.0 0.5 0.7 0.7   

AIG 319 10.6 8.1 7.8 4.2 5.1 5.5 52% 

AMAT 414 7.0 5.6 5.3 3.3 3.6 3.9 56% 
AMGN 551 10.2 7.8 7.4 4.0 4.4 4.8 47% 
AMR 295 9.3 7.0 6.7 3.1 4.2 4.5 48% 

AMZN 671 9.3 7.0 6.7 3.4 3.8 4.3 46% 
AOL 52 7.0 6.0 6.0 4.7 5.1 5.1 73% 
BMY 220 7.5 6.1 5.9 3.6 4.3 4.6 61% 

BRCM 552 9.7 7.3 6.9 3.4 3.8 4.3 44% 
C 475 8.0 6.5 6.3 4.1 4.5 4.9 61% 

COF 182 12.1 9.0 8.5 4.1 5.4 5.8 48% 
CPN 115 7.4 6.1 5.9 3.9 4.6 4.8 65% 

CSCO 775 6.4 5.3 5.2 3.4 3.5 3.8 59% 
DELL 506 7.5 6.0 5.8 3.4 3.6 4.0 53% 
EBAY 1,246 10.1 7.8 7.4 4.0 4.3 4.9 49% 
EMC 251 6.8 5.4 5.3 3.5 3.8 3.9 57% 

F 203 6.9 5.7 5.6 3.6 4.2 4.4 64% 
GE 614 6.8 5.7 5.6 3.9 4.2 4.4 65% 
GM 619 10.1 7.8 7.5 3.6 4.8 5.0 50% 
HD 372 8.1 6.5 6.3 3.9 4.4 4.7 58% 
IBM 740 9.7 7.6 7.3 4.3 4.8 5.2 54% 
INTC 1,228 6.4 5.4 5.2 3.4 3.5 3.8 59% 
JPM 380 8.4 6.8 6.5 4.2 4.7 5.0 60% 

KLAC 313 9.8 7.3 6.9 3.5 3.8 4.1 42% 
MMM 274 11.5 8.8 8.4 4.7 5.6 6.0 52% 
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MO 572 10.4 8.2 7.9 4.4 5.4 5.8 56% 
MSFT 970 6.4 5.4 5.2 3.4 3.5 3.8 59% 
MWD 148 9.9 7.6 7.3 4.0 5.0 5.3 54% 
NXTL 192 8.2 6.5 6.4 4.2 4.7 5.0 61% 
ORCL 306 6.4 5.3 5.1 3.3 3.5 3.7 58% 
PFE 711 7.0 5.8 5.7 3.7 4.0 4.3 61% 

QCOM 750 9.2 7.0 6.8 3.6 3.9 4.2 46% 
QLGC 243 9.8 7.3 6.9 3.5 4.0 4.3 44% 
QQQ 1,963 6.3 5.4 5.2 3.7 3.7 3.9 62% 

QQQQ 1,840 6.2 5.0 4.7 2.2 2.3 2.6 42% 
SBC 108 7.6 6.1 6.0 4.3 4.7 4.9 64% 
SMH 387 7.9 6.0 5.7 2.9 3.5 3.7 47% 
TYC 225 8.4 6.7 6.4 4.1 4.7 4.9 58% 

XLNX 170 8.8 6.4 6.1 3.2 3.7 3.9 44% 

XOM 537 8.7 6.9 6.7 3.6 4.2 4.7 54% 
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Table 6 Price impacts and expected changes in the quote midpoint  
Observed price impact is measured as the difference between the quote midpoint 
immediately before a trade and ten (one) minutes later, ௧ܲା் െ ௧ܲ. The expected price 
change is the difference between the expected future midpoint predicted by regression in 
Eq. (3) and the pre-trade quote midpoint, ෠ܲ௧ା் െ ௧ܲ. The adjusted price impact is the 
difference between observed impact and the expected change in price, Δ ௧ܲା் െ Δ ෠ܲ௧ା். It 
measures the causal impact a trade. The last column reports the ratio between the 
observed and adjusted price impacts. Observed price impact significantly overestimates 
the causal impact of trades. The price changes are reported for one and ten minute 
horizons and are measured in cents. An average and standard deviation across 39 stocks 
are reported at the top.  
 

Ticker 
  

Observed Price 
Impact, Cents 

Expected Price 
Change, Cents 

Adjusted Price 
Impact, Cents 

Ratio of 
Adjusted 
to 
Observed 
Impact 

1  
Minute 

10 
Minutes 

1 
Minute 

10 
Minutes 

1 
Minute 

10 
Minutes 

Average 1.13 1.34 0.47 0.82 0.66 0.52 39% 

Std.Dev. 0.37 0.40 0.24 0.30 0.19 0.18   

AIG 1.51 1.80 0.64 1.08 0.87 0.72 40% 
AMAT 0.87 1.01 0.36 0.66 0.51 0.35 35% 
AMGN 1.52 1.73 0.81 1.21 0.71 0.52 30% 
AMR 1.45 1.79 0.42 0.87 1.03 0.92 51% 

AMZN 1.42 1.64 0.76 1.16 0.66 0.48 29% 
AOL 0.48 0.65 0.13 0.31 0.35 0.34 52% 
BMY 0.92 1.12 0.24 0.53 0.68 0.59 53% 

BRCM 1.64 1.77 0.90 1.31 0.74 0.46 26% 
C 0.96 1.13 0.34 0.66 0.62 0.47 42% 

COF 1.82 2.26 0.76 1.24 1.06 1.02 45% 
CPN 0.81 1.00 0.11 0.32 0.70 0.68 68% 

CSCO 0.74 0.93 0.26 0.57 0.48 0.36 39% 
DELL 1.06 1.23 0.45 0.81 0.61 0.42 34% 
EBAY 1.59 1.76 0.88 1.25 0.71 0.51 29% 
EMC 0.74 0.93 0.21 0.51 0.53 0.42 45% 

F 0.78 0.98 0.15 0.42 0.63 0.56 57% 
GE 0.67 0.84 0.22 0.46 0.45 0.38 45% 
GM 1.61 1.95 0.47 1.00 1.14 0.95 49% 
HD 1.03 1.19 0.39 0.72 0.64 0.47 39% 
IBM 1.34 1.53 0.63 1.00 0.71 0.53 35% 
INTC 0.75 0.95 0.31 0.62 0.44 0.33 35% 
JPM 0.94 1.18 0.33 0.66 0.61 0.52 44% 

KLAC 1.61 1.75 0.97 1.31 0.64 0.44 25% 
MMM 1.64 1.87 0.72 1.13 0.92 0.74 40% 

MO 1.48 1.78 0.52 0.93 0.96 0.85 48% 
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MSFT 0.77 0.95 0.25 0.57 0.52 0.38 40% 
MWD 1.41 1.64 0.55 0.92 0.86 0.72 44% 
NXTL 0.96 1.11 0.36 0.66 0.60 0.45 41% 
ORCL 0.75 0.94 0.23 0.53 0.52 0.41 44% 
PFE 0.83 1.02 0.26 0.56 0.57 0.46 45% 

QCOM 1.48 1.59 0.82 1.21 0.66 0.38 24% 
QLGC 1.52 1.72 0.74 1.18 0.78 0.54 31% 
QQQ 0.56 0.79 0.29 0.58 0.27 0.21 27% 

QQQQ 1.01 1.23 0.48 0.91 0.53 0.32 26% 
SBC 0.68 0.85 0.20 0.43 0.48 0.42 49% 
SMH 1.21 1.41 0.54 0.94 0.67 0.47 33% 
TYC 0.99 1.20 0.32 0.64 0.67 0.56 47% 

XLNX 1.35 1.50 0.66 1.04 0.69 0.46 31% 

XOM 1.33 1.54 0.51 0.92 0.82 0.62 40% 
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Table 7 Price impact regressions explaining changes in the quote midpoint  t
tP  and the 

BSM-adjusted change BSM
t

t
t PP ˆ   

In the first three specifications the measure of price impact is the change in the quote 
midpoint tt

t
t PPP  



  during the  ten minutes after a trade at time t. The fourth 

regression uses the BSM-adjusted price impact BSM
t

t
t PP ˆ   as the dependent variable. The 

right-hand side variables include the absolute value of the option delta (||), the square 

root of the time to option expiration ( tT  ), a dummy variable taking the value of one 
if the option traded is a call (ICall), a time trend measured in years (TimeTrend), the option 
bid-ask spread measured in cents (Bid-Ask), a dummy variable taking the value of one if 
the trade is a purchase (IBuy), the square root of the trade size measured in contracts (

Size ), a dummy variable taking the value one if the trade size is one contract (ISize = 1), 
the number of option exchanges at the NBBO on the side of the market where the trade 
occurred (#ExchAtNBBO), a dummy variable taking the value one if there is only one 
exchange at the NBBO on the side of the market where the trade occurred (I#Exch = 1). The 
second and third specifications also include the predicted price change from the 

regression model,  t
tP̂ , and the fourth specification allows for a non-linear relation 

between the predicted and actual prices changes by including dummy variables 

20
ˆ


 x

t
t IP  , 52

ˆ


 x
t

t IP  , and x
Tt

t IP 
 5

ˆ that take the value one if the predicted quote 

change l is between zero and two cents, two and five cents, and greater than five cents, 
respectively.  t-statistics based on robust standard errors, which are clustered by date, are 
reported in parentheses. Stock fixed effects are included in the regressions but not 
reported.  
 

 
 t

tP   t
tP   t

tP  BSM
t

t
t PP ˆ   

 t
tP̂ (cents) 0.776  0.584 

(66.92)   (32.60) 

|| 0.102 -0.127 -0.315 0.201 
(4.20) (5.77) (13.53) (8.87) 

tT   -0.030 -0.005 -0.005 0.008 

(33.51) (5.68) (5.35) (10.93) 

ICall -0.018 -0.046 -0.041 -0.079 
(2.86) (7.25) (6.50) (11.28) 

TimeTrend 0.552 0.228 0.201 0.043 
(92.37) (33.31) (34.23) (9.75) 

Option Price ($) 0.158 0.079 0.082 0.010 
(38.50) (20.01) (19.82) (2.65) 

Bid-Ask (cents) 0.061 0.017 0.012 0.008 
(26.70) (7.74) (6.08) (4.97) 

IBuy 0.116 0.144 0.145 0.087 
(7.88) (8.98) (9.08) (4.43) 



50 
 

Size  0.019 0.019 0.018 0.018 
(50.26) (50.22) (50.43) (48.73) 

ISize=1 -0.160 -0.079 -0.076 -0.058 
(16.43) (8.51) (8.17) (6.06) 

#ExchAtNBBO -0.571 -0.198 -0.162 -0.015 
(139.13) (27.08) (28.51) (5.11) 

I#Exch = 1 0.562 0.194 0.155 -0.006 
(35.07) (19.41) (16.16) (0.65) 

20
ˆ


 x

t
t IP   0.435 

(22.46) 

52
ˆ


 x

t
t IP   0.366 

(21.90) 

x
t

t IP 
 5

ˆ   0.201 
(15.49) 

R2 0.05 0.09 0.09 0.00 

N (1,000s) 20,483 20,483 20,483 20,483 
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Table 8 Regressions explaining the execution timing bias  

Each column reports the results of a regression of the timing bias on the absolute value of 

the option delta (||), the square root of the time to option expiration ( tT  ), a dummy 
variable taking the value of one if the option traded is a call (ICall), a time trend measured 
in years (TimeTrend), the option bid-ask spread measured in cents (Bid-Ask), a dummy 
variable taking the value of one if the trade is a purchase (IBuy), the square root of the 

trade size measured in contracts ( Size ), a dummy variable taking the value one if the 
trade size is one contract (ISize = 1), the number of option exchanges at the NBBO on the 
side of the market where the trade occurred (#ExchAtNBBO), a dummy variable taking 
the value one if there is only one exchange at the NBBO on the side of the market where 
the trade occurred (I#Exch = 1). The last column uses the subsample of trades with more 
than one exchange quoting the relevant best price. The timing bias for an option is 
defined in Eq. (4) as the expected one hour change in the quote midpoint from the 
regression model in Eq. (3) divided by the average quoted spread for the option. t-
statistics based on robust standard errors, which are clustered by date, are reported in 
parentheses. Stock fixed effects are included in the regressions but not reported.  
 

Execution Timing 
(%) 

Full 
Sample 

Full 
Sample 

Full 
Sample 

|| 19.367 19.492 0.412 
 (46.11) (45.88) (0.90) 

tT   0.009 0.011 1.133 

 (0.58) (0.74) (63.15) 
ICall -2.028 -2.189 1.081 

 (16.01) (18.17) (11.44) 
TimeTrend 6.720 6.743 16.450 

 (54.83) (55.48) (102.42) 
Option Price ($) 4.068 4.097 0.512 

 (77.74) (77.84) (7.38) 
Bid-Ask (cents) -3.553 -3.570 1.578 

 (97.72) (96.72) (35.88) 
IBuy  -3.564 -6.710 

  (9.05) (20.03) 
Size   -0.160 0.047 

  (23.30) (10.49) 
ISize=1  1.843 -2.696 

  (6.66) (14.90) 
#ExchAtNBBO   -19.552 

   (284.99) 
I#Exch = 1   15.500 

   (41.67) 
R2 0.05 0.06 0.33 

N (1,000s) 20484 20483 20483 
 



52 
 

 Table 9 Comparison of the conventional and adjusted price impacts for trades of round 
and non-round sizes  

The table reports the results of three regressions explaining different measures of price 
impact.  The first column uses the conventional observed price impact, measured as the 
dollar difference between the quote midpoint ten minutes after a trade and the pre-trade 
quote midpoint, Pt+   Pt. The second column uses the regression-adjusted price impact, 
computed as the difference between the quote midpoint ten minutes after a trade and the 
expected future midpoint predicted by the regression model in Eq. (3), ෠ܲ௧ା െ ௧ܲ. The last 
column uses the BSM-adjusted price impact, computed as the difference between the 
quote midpoint ten minutes after a trade and the option price implied from the price of the 
underlying (Eq. 1) immediately before a trade. Each observation is an average of price 
impacts for a given trade size.  Round trades are those for which the trade size is greater 
than 15 and divisible by 10. Round-five trades are those for which the trade size is greater 
than 15 and divisible by 5, and are not also round trades. A dummy variable for trade size 
greater than fifteen contracts ISize>15 is included so that the round-size dummies estimate 
proper conditional means. Only trade sizes of less than hundred contracts are included. 
Robust t-statistics are reported in parentheses.  
 

 Price Impact (cents) 

 

Conventional 
Price Impact

 t
tP  

Regression-
Adjusted 
Impact

   t
t

t
t PP ˆ  

BSM-
Adjusted 
Impact

BSM
t

t
t PP ˆ   

IRound-five ‐0.199 -0.045 0.031 
(6.09) (2.24) (1.68) 

IRound -0.414 -0.126 -0.006 
(12.45) (6.25) (0.31) 

ISize > 15 0.156 0.016 -0.041 
(1.78) (0.34) (1.21) 

Size -0.017 -0.006 -0.002 

 (2.62) (1.69) (0.73) 

Size  0.328 0.165 0.104 

 (3.23) (3.02) (2.90) 

Option Price ($) 1.029 0.731 0.705 
(2.89) (3.73) (5.30) 

R2 0.85 0.83 0.76 
N 99  99 99  

 


